

    
      
          
            
  
Welcome to PISA

Performant Indexes and Search for Academia


Description

PISA is a text search engine able to run on large-scale collections of documents. It allows researchers to experiment with state-of-the-art techniques, allowing an ideal environment for rapid development.

Some features of PISA are listed below:


	Written in C++ for performance


	Indexing, parsing & sharding capabilities


	Many index compression methods supported


	Many query processing algorithms supported


	Implementation of document reordering


	Free and open-source with permissive license





Note

PISA is still in its unstable release, and no stability or backwards-compatibility is guaranteed with each new version. New features are constantly added, and contributions are welcome!




Contents:


	Getting Started
	Building the code
	Requirements

	Dependencies

	Building
	Build Types

	Build Systems









	Testing

	PISA Regression Experiments





	Indexing Pipeline
	External Resources
	Raw Collection

	CIFF Index





	Forward Index

	Inverted Index
	Uncompressed / Binary Collection

	Compressed





	WAND Data

	Shards





	Parsing
	Generating mapping files

	Supported stemmers

	Supported formats





	Inverting
	Inverted index format
	Reading the inverted index using Python









	Sharding
	Partitioning collection

	Working with shards





	Compress Index
	Usage

	Compression Algorithms
	Binary Interpolative Coding

	Elias-Fano

	MaskedVByte

	OptPFD

	Partitioned Elias Fano

	QMX

	SIMD-BP128

	Simple8b

	Simple16

	StreamVByte

	Varint-G8IU

	VarintGB









	Query an index
	Usage

	Build additional data

	Query algorithms
	AND

	OR

	MaxScore

	WAND

	BlockMax WAND

	BlockMax MaxScore

	Variable BlockMax WAND









	Document Reordering
	Reordering document lexicon

	Random

	By feature (e.g., URL or TRECID)

	From custom mapping

	Recursive Graph Bisection





	Threshold estimation









          

      

      

    

  

    
      
          
            
  
Getting Started


Building the code


Requirements

To compile PISA, you will need a compiler supporting at least the C++17
standard. Our continuous integration pipeline compiles PISA and runs
tests in the following configurations:


	Linux:


	GCC, versions: 9, 10, 11, 12


	Clang 11






	MaxOS:


	XCode 13.2








Supporting Windows is planned but is currently not being actively worked on,
mostly due to a combination of man-hour shortage, prioritization, and no
core contributors working on Windows at the moment.
If you want to help us set up a Github workflow for Windows and work out
some issues with compilation, let us know on our
Slack channel [https://join.slack.com/t/pisa-engine/shared_invite/zt-dbxrm1mf-RtQMZTqxxlhOJsv3GHUErw].



Dependencies

Most build dependencies are managed automatically with CMake and git submodules.
However, several dependencies still need to be manually provided:


	CMake >= 3.0


	autoconf,  automake, libtool, and m4 (for building gumbo-parser)


	OpenMP (optional)






Building

The following steps explain how to build PISA.
First, you need the code checked out from Github.
(Alternatively, you can download the tarball and unpack it on your local machine.)

$ git clone https://github.com/pisa-engine/pisa.git
$ cd pisa





Then create a build environment.

$ mkdir build
$ cd build





Finally, configure with CMake and compile:

$ cmake ..
$ make






Build Types

There are two build types available:


	Release (default)


	Debug


	RelWithDebInfo


	MinSizeRel




Use Debug only for development, testing, and debugging. It is much slower at runtime.

Learn more from CMake documentation [https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html].



Build Systems

CMake supports configuring for different build systems.
On Linux and Mac, the default is Makefiles, thus, the following two commands are equivalent:

$ cmake -G ..
$ cmake -G "Unix Makefiles" ..





Alternatively to Makefiles, you can configure the project to use Ninja instead:

$ cmake -G Ninja ..
$ ninja # instead of make





Other build systems should work in theory but are not tested.





Testing

You can run the unit and integration tests with:

$ ctest





The directory test/test_data contains a small document collection used in the
unit tests. The binary format of the collection is described in a following
section.
An example set of queries can also be found in test/test_data/queries.



PISA Regression Experiments


	Regressions for Disks 4 & 5 (Robust04)








          

      

      

    

  

    
      
          
            
  
Indexing Pipeline

This section is an overview of how to take a collection
to a state in which it can be queried.
This process is intentionally broken down into several steps,
with a bunch of independent tools performing different tasks.
This is because we want the flexibility of experimenting with each
individual step without recomputing the entire pipeline.

[image: Indexing Pipeline]

External Resources


Raw Collection

The raw collection is a dataset containing the documents to index. A
collection is encoded in one of the supported
formats that stores a list of document
contents along with some metadata, such as URL and title. The
parse_collection tool takes a collection as an input and parses it to
a forward index (see Forward Index). See
Parsing for more details.



CIFF Index

This is an inverted index in the Common Index File Format [https://github.com/osirrc/ciff].
It can be converted to an uncompressed PISA index (more information below)
with the ``ciff2pisa` <https://github.com/pisa-engine/ciff>`_ tool.




Forward Index

A forward index is the output of the parse_collection tool.
It represents each document as a list of tokens (terms) in the order of their appearance.
To learn more about parsing and the forward index format, see Parsing.



Inverted Index

An inverted index is the most fundamental structure in PISA.
For each term in the collection, it contains a list of documents the term appears in.
PISA distinguishes two types of inverted index.


Uncompressed / Binary Collection

The uncompressed index stores document IDs and frequencies as 4-byte integers.
It is an intermediate format between forward index and compressed inverted index.
It is obtained by running invert on a forward index.
To learn more about inverting a forward index, see Inverting.
Optionally, documents can be reordered with reorder-docids to obtain another
instance of uncompressed inverted index with different assignment of IDs to documents.
More on reordering can be found in Document Reordering.



Compressed

An uncompressed index is large and therefore before running queries, it
must be compressed with one of many available encoding methods. It is
this compressed index format that is directly used when issuing queries.
See Compress Index to learn more.




WAND Data

This is a special metadata file containing additional statistics used during query processing.
See Build additional data.



Shards

PISA supports partitioning a forward index into subsets called shards.
Structures of all shards can be transformed in bulk using shards command line tool.
To learn more, read Sharding.





          

      

      

    

  

    
      
          
            
  
Parsing

A forward index is a data structure that stores the term identifiers
associated to every document. Conversely, an inverted index stores for
each unique term the document identifiers where it appears (usually,
associated to a numeric value used for ranking purposes such as the raw
frequency of the term within the document).

The objective of the parsing process is to represent a given collection
as a forward index. To parse a collection, use the parse_collection
command:

parse_collection - parse collection and store as forward index.
Usage: parse_collection [OPTIONS] [SUBCOMMAND]

Options:
  -h,--help                   Print this help message and exit
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  -j,--threads UINT           Number of threads
  --tokenizer TEXT:{english,whitespace}=english
                              Tokenizer
  -H,--html UINT=0            Strip HTML
  -F,--token-filters TEXT:{krovetz,lowercase,porter2} ...
                              Token filters
  --stopwords TEXT            Path to file containing a list of stop words to filter out
  --config TEXT               Configuration .ini file
  -o,--output TEXT REQUIRED   Forward index filename
  -b,--batch-size INT=100000  Number of documents to process in one thread
  -f,--format TEXT=plaintext  Input format

Subcommands:
  merge                       Merge previously produced batch files. When parsing process was killed during merging, use this command to finish merging without having to restart building batches.





For example:

$ mkdir -p path/to/forward
$ zcat ClueWeb09B/*/*.warc.gz |   # pass unzipped stream in WARC format
    parse_collection \
    -j 8                          # use up to 8 threads at a time
    -b 10000                      # one thread builds up to 10k documents in memory
    -f warc                       # use WARC
    -F lowercase porter2          # lowercase and stem every term (using the Porter2 algorithm)
    --html                        # strip HTML markup before extracting tokens
    -o path/to/forward/cw09b





In case you get the error -bash: /bin/zcat: Argument list too long,
you can pass the unzipped stream using:

$ find ClueWeb09B -name '*.warc.gz' -exec zcat -q {} \;





The parsing process will write the following files:


	cw09b: forward index in binary format.


	cw09b.terms: a new-line-delimited list of sorted terms, where term
having ID N is on line N, with N starting from 0.


	cw09b.termlex: a binary representation (lexicon) of the .terms
file that is used to look up term identifiers at query time.


	cw09b.documents: a new-line-delimited list of document titles (e.g.,
TREC-IDs), where document having ID N is on line N, with N starting
from 0.


	cw09b.doclex: a binary representation of the .documents file that
is used to look up document identifiers at query time.


	cw09b.urls: a new-line-delimited list of URLs, where URL having ID N
is on line N, with N starting from 0. Also, keep in mind that each ID
corresponds with an ID of the cw09b.documents file.





Generating mapping files

Once the forward index has been generated, a binary document map and
lexicon file will be automatically built. However, they can also be
built using the lexicon utility by providing the new-line delimited
file as input. The lexicon utility also allows efficient look-ups and
dumping of these binary mapping files.

Examples of the lexicon command are shown below:

Build, print, or query lexicon
Usage: lexicon [OPTIONS] SUBCOMMAND

Options:
  -h,--help                   Print this help message and exit
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  --config TEXT               Configuration .ini file

Subcommands:
  build                       Build a lexicon
  lookup                      Retrieve the payload at index
  rlookup                     Retrieve the index of payload
  print                       Print elements line by line





For example, assume we have the following plaintext, new-line delimited
file, example.terms:

aaa
bbb
def
zzz





We can generate a lexicon as follows:

./bin/lexicon build example.terms example.lex





You can dump the binary lexicon back to a plaintext representation:

./bin/lexicon print example.lex





It should output:

aaa
bbb
def
zzz





You can retrieve the term with a given identifier:

./bin/lexicon lookup example.lex 2





Which outputs:

def





Finally, you can retrieve the id of a given term:

./bin/lexicon rlookup example.lex def





It outputs:

2





NOTE: This requires the initial file to be lexicographically sorted,
as rlookup uses binary search for reverse lookups.



Supported stemmers


	Porter2 [https://snowballstem.org/algorithms/english/stemmer.html]


	Krovetz [https://dl.acm.org/doi/abs/10.1145/160688.160718]




Both are English stemmers. Unfortunately, PISA does not have support for
any other languages. Contributions are welcome.



Supported formats

The following raw collection formats are supported:


	plaintext: every line contains the document’s title first, then any
number of whitespaces, followed by the content delimited by a new line
character.


	trectext: TREC newswire collections.


	trecweb: TREC web collections.


	warc: Web ARChive format as defined in the format
specification [https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/].


	wapo: TREC Washington Post Corpus.




In case you want to parse a set of files where each one is a document (for example, the collection
wiki-large [http://dg3rtljvitrle.cloudfront.net/wiki-large.tar.gz]), use the files2trec.py script
to format it to TREC (take into account that each relative file path is used as the document ID).
Once the file is generated, parse it with the parse_collection command specifying the trectext
value for the --format option.





          

      

      

    

  

    
      
          
            
  
Inverting

Once the parsing phase is complete, use the invert command to turn a
forward index into an inverted index:

Constructs an inverted index from a forward index.
Usage: invert [OPTIONS]

Options:
  -h,--help                   Print this help message and exit
  -i,--input TEXT REQUIRED    Forward index basename
  -o,--output TEXT REQUIRED   Output inverted index basename
  --term-count TEXT           Number of distinct terms in the forward index
  -j,--threads UINT           Number of threads
  --batch-size UINT=100000    Number of documents to process at a time
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  --config TEXT               Configuration .ini file





For example, assuming the existence of a forward index in the path
path/to/forward/cw09b:

$ mkdir -p path/to/inverted
$ ./invert -i path/to/forward/cw09b -o path/to/inverted/cw09b --term-count `wc -w < path/to/forward/cw09b.terms`





Note that the script requires as parameter the number of terms to be
indexed, which is obtained by embedding the
wc -w < path/to/forward/cw09b.terms instruction.


Inverted index format

A binary sequence is a sequence of integers prefixed by its length,
where both the sequence integers and the length are written as 32-bit
little-endian unsigned integers. An inverted index consists of 3
files, <basename>.docs, <basename>.freqs, <basename>.sizes:


	<basename>.docs starts with a singleton binary sequence where its
only integer is the number of documents in the collection. It is then
followed by one binary sequence for each posting list, in order of
term-ids. Each posting list contains the sequence of document-ids
containing the term.


	<basename>.freqs is composed of a one binary sequence per posting
list, where each sequence contains the occurrence counts of the
postings, aligned with the previous file (note however that this file
does not have an additional singleton list at its beginning).


	<basename>.sizes is composed of a single binary sequence whose
length is the same as the number of documents in the collection, and
the i-th element of the sequence is the size (number of terms) of the
i-th document.





Reading the inverted index using Python

Here is an example of a Python script reading the uncompressed inverted
index format:

import os
import numpy as np

class InvertedIndex:
    def __init__(self, index_name):
        index_dir = os.path.join(index_name)
        self.docs = np.memmap(index_name + ".docs", dtype=np.uint32,
              mode='r')
        self.freqs = np.memmap(index_name + ".freqs", dtype=np.uint32,
              mode='r')

    def __iter__(self):
        i = 2
        while i < len(self.docs):
            size = self.docs[i]
            yield (self.docs[i+1:size+i+1], self.freqs[i-1:size+i-1])
            i += size+1

    def __next__(self):
        return self

for i, (docs, freqs) in enumerate(InvertedIndex("cw09b")):
    print(i, docs, freqs)










          

      

      

    

  

    
      
          
            
  
Sharding

We support partitioning a collection into a number of smaller subsets called shards.
Right now, only a forward index can be partitioned by running partition_fwd_index command.
For convenience, we provide shards command that supports certain bulk operations on all shards.


Partitioning collection

We support two methods of partitioning: random, and by a defined mapping.
For example, one can partition collection randomly:

$ partition_fwd_index \
    -j 8                          # use up to 8 threads at a time
    -i full_index_prefix \
    -o shard_prefix \
    -r 123                          # partition randomly into 123 shards





Alternatively, a set of files can be provided.
Let’s assume we have a folder shard-titles with a set of text files.
Each file contains new-line-delimited document titles (e.g., TREC-IDs) for one partition.
Then, one would call:

$ partition_fwd_index \
    -j 8                          # use up to 8 threads at a time
    -i full_index_prefix \
    -o shard_prefix \
    -s shard-titles/*





Note that the names of the files passed with -s will be ignored.
Instead, each shard will be assigned a numerical ID from 0 to N - 1 in order
in which they are passed in the command line.
Then, each resulting forward index will have appended .ID to its name prefix:
shard_prefix.000, shard_prefix.001, and so on.



Working with shards

The shards tool allows to perform some index operations in bulk on all shards at once.
At the moment, the following subcommands are supported:


	invert,


	compress,


	wand-data, and


	reorder-docids.




All input and output paths passed to the subcommands will be expanded for each individual shards
by extending it with .<shard-id> (e.g., .000) or, if substring {} is present, then
the shard number will be substituted there. For example:

shards reorder-docids --by-url \
    -c inv \
    -o inv.url \
    --documents fwd.{}.doclex \
    --reordered-documents fwd.url.{}.doclex





is equivalent to running the following command for every shard XYZ:

reorder-docids --by-url \
    -c inv.XYZ \
    -o inv.url.XYZ \
    --documents fwd.XYZ.doclex \
    --reordered-documents fwd.url.XYZ.doclex









          

      

      

    

  

    
      
          
            
  
Compress Index


Usage

To create an index use the command compress_inverted_index. The
available index types are listed in index_types.hpp.

Compresses an inverted index
Usage: compress_inverted_index [OPTIONS]

Options:
  -h,--help                   Print this help message and exit
  -c,--collection TEXT REQUIRED
                              Forward index basename
  -o,--output TEXT REQUIRED   Output inverted index
  --check                     Check the correctness of the index
  -e,--encoding TEXT REQUIRED Index encoding
  -w,--wand TEXT Needs: --scorer
                              WAND data filename
  -s,--scorer TEXT Needs: --wand --quantize
                              Scorer function
  --bm25-k1 FLOAT Needs: --scorer
                              BM25 k1 parameter.
  --bm25-b FLOAT Needs: --scorer
                              BM25 b parameter.
  --pl2-c FLOAT Needs: --scorer
                              PL2 c parameter.
  --qld-mu FLOAT Needs: --scorer
                              QLD mu parameter.
  --quantize Needs: --scorer  Quantizes the scores
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  --config TEXT               Configuration .ini file





For example, to create an index using the optimal partitioning
algorithm, using the test collection, execute the command:

$ ./bin/compress_inverted_index -t opt \
    -c ../test/test_data/test_collection \
    -o test_collection.index.opt \
    --check





where test/test_data/test_collection is the basename of the
collection, that is the name without the .{docs,freqs,sizes}
extensions, and test_collection.index.opt is the filename of the
output index. --check will trigger a verification step to check the
correctness of the index.



Compression Algorithms


Binary Interpolative Coding

Binary Interpolative Coding (BIC) directly encodes a monotonically increasing sequence. At each step of this recursive algorithm, the middle element m is encoded by a number m − l − p, where l is the lowest value and p is the position of m in the currently encoded sequence. Then we recursively encode the values to the left and right of m. BIC encodings are very space-efficient, particularly on
clustered data; however, decoding is relatively slow.

To compress an index using BIC use the index type block_interpolative.


Alistair Moffat, Lang Stuiver: Binary Interpolative Coding for Effective Index Compression. Inf. Retr. 3(1): 25-47 (2000)






Elias-Fano

Given a monotonically increasing integer sequence S of size n, such that (S_{n-1} < u), we can encode it in binary using (lceillog urceil) bits.
Elias-Fano coding splits each number into two parts, a low part consisting of (l = lceillog frac{u}{n}rceil) right-most bits, and a high part consisting of the remaining (lceillog urceil - l) left-most bits. The low parts are explicitly written in binary for all numbers, in a single stream of bits. The high parts are compressed by writing, in negative-unary form, the gaps between the high parts of consecutive numbers.

To compress an index using Elias-Fano use the index type ef.


Sebastiano Vigna. 2013. Quasi-succinct indices. In Proceedings of the sixth ACM international conference on Web search and data mining (WSDM ‘13). ACM, New York, NY, USA, 83-92.






MaskedVByte


Jeff Plaisance, Nathan Kurz, Daniel Lemire, Vectorized VByte Decoding, International Symposium on Web Algorithms 2015, 2015.






OptPFD


Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression and query processing with optimized document ordering. In Proceedings of the 18th international conference on World wide web (WWW ‘09). ACM, New York, NY, USA, 401-410. DOI: https://doi.org/10.1145/1526709.1526764






Partitioned Elias Fano


Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano indexes. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (SIGIR ‘14). ACM, New York, NY, USA, 273-282. DOI: https://doi.org/10.1145/2600428.2609615






QMX

Quantities, Multipliers, and eXtractor (QMX) packs as many integers as possible into 128-bit words (Quantities) and stores the selectors (eXtractors) separately in a different stream. The selectors are compressed (Multipliers) with
RLE (Run-Length Encoding).

To compress an index using QMX use the index type block_qmx.


Andrew Trotman. 2014. Compression, SIMD, and Postings Lists. In Proceedings of the 2014 Australasian Document Computing Symposium (ADCS ‘14), J. Shane Culpepper, Laurence Park, and Guido Zuccon (Eds.). ACM, New York, NY, USA, Pages 50, 8 pages. DOI: https://doi.org/10.1145/2682862.2682870






SIMD-BP128


Daniel Lemire, Leonid Boytsov: Decoding billions of integers per second through vectorization. Softw., Pract. Exper. 45(1): 1-29 (2015)






Simple8b




Vo Ngoc Anh, Alistair Moffat: Index compression using 64-bit words. Softw., Pract. Exper. 40(2): 131-147 (2010)






Simple16


Jiangong Zhang, Xiaohui Long, and Torsten Suel. 2008. Performance of compressed inverted list caching in search engines. In Proceedings of the 17th international conference on World Wide Web (WWW ‘08). ACM, New York, NY, USA, 387-396. DOI: https://doi.org/10.1145/1367497.1367550






StreamVByte


Daniel Lemire, Nathan Kurz, Christoph Rupp: Stream VByte: Faster byte-oriented integer compression. Inf. Process. Lett. 130: 1-6 (2018). DOI: https://doi.org/10.1016/j.ipl.2017.09.011






Varint-G8IU


Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and Paramjit S. Oberoi. 2011. SIMD-based decoding of posting lists. In Proceedings of the 20th ACM international conference on Information and knowledge management (CIKM ‘11), Bettina Berendt, Arjen de Vries, Wenfei Fan, Craig Macdonald, Iadh Ounis, and Ian Ruthven (Eds.). ACM, New York, NY, USA, 317-326. DOI: https://doi.org/10.1145/2063576.2063627






VarintGB


Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems: invited talk. In Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM ‘09), Ricardo Baeza-Yates, Paolo Boldi, Berthier Ribeiro-Neto, and B. Barla Cambazoglu (Eds.). ACM, New York, NY, USA, 1-1. DOI: http://dx.doi.org/10.1145/1498759.1498761









          

      

      

    

  

    
      
          
            
  
Query an index


Usage

Benchmarks queries on a given index.
Usage: queries [OPTIONS]

Options:
  -h,--help                   Print this help message and exit
  -e,--encoding TEXT REQUIRED Index encoding
  -i,--index TEXT REQUIRED    Inverted index filename
  -w,--wand TEXT              WAND data filename
  --compressed-wand Needs: --wand
                              Compressed WAND data file
  --tokenizer TEXT:{english,whitespace}=english
                              Tokenizer
  -H,--html UINT=0            Strip HTML
  -F,--token-filters TEXT:{krovetz,lowercase,porter2} ...
                              Token filters
  --stopwords TEXT            Path to file containing a list of stop words to filter out
  -q,--queries TEXT           Path to file with queries
  --terms TEXT                Term lexicon
  --weighted                  Weights scores by query frequency
  -k INT REQUIRED             The number of top results to return
  -a,--algorithm TEXT REQUIRED
                              Query processing algorithm
  -s,--scorer TEXT REQUIRED   Scorer function
  --bm25-k1 FLOAT Needs: --scorer
                              BM25 k1 parameter.
  --bm25-b FLOAT Needs: --scorer
                              BM25 b parameter.
  --pl2-c FLOAT Needs: --scorer
                              PL2 c parameter.
  --qld-mu FLOAT Needs: --scorer
                              QLD mu parameter.
  -T,--thresholds TEXT        File containing query thresholds
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  --config TEXT               Configuration .ini file
  --quantized                 Quantized scores
  --extract                   Extract individual query times
  --safe Needs: --thresholds  Rerun if not enough results with pruning.





Now it is possible to query the index. The command queries treats each
line of the standard input (or a file if -q is present) as a separate
query. A query line contains a whitespace-delimited list of tokens.
These tokens are either interpreted as terms (if --terms is defined,
which will be used to resolve term IDs) or as term IDs (if --terms is
not defined). Optionally, a query can contain query ID delimited by a
colon:

      Q1:one two three
      ~~ ~~~~~~~~~~~~~
query ID         terms





For example:

$ ./bin/queries \
    -e opt                        # index encoding
    -a and                        # retrieval algorithm
    -i test_collection.index.opt  # index path
    -w test_collection.wand       # metadata file
    -q ../test/test_data/queries    # query input file





This performs conjunctive queries (and). In place of and other
operators can be used (see Query algorithms), and
also multiple operators separated by colon (and:or:wand), which will
run multiple passes, one per algorithm.

If the WAND file is compressed, append --compressed-wand flag.



Build additional data

To perform BM25 queries it is necessary to build an additional file
containing the parameters needed to compute the score, such as the
document lengths. The file can be built with the following command:

$ ./bin/create_wand_data \
    -c ../test/test_data/test_collection \
    -o test_collection.wand





If you want to compress the file append --compress at the end of the
command. When using variable-sized blocks (for VBMW) via the
--variable-block parameter, you can also specify lambda with the `-l


  
    

    Document Reordering
    

    
 
  

    
      
          
            
  
Document Reordering

PISA supports reassigning document IDs that were initially assigned in order of parsing.
The point of doing it is usually to decrease the index size or speed up query processing.
This part is done on an uncompressed inverted index.
Depending on the method, you might also need access to some parts of the forward index.
We support the following ways of reordering:


	random,


	by a feature (such as URL or document TREC ID),


	with a custom-defined mapping, and


	recursive graph bisection.
All of the above are supported by a single command reorder-docids.
Below, we explain each method and show some examples of running the command.





Reordering document lexicon

All methods can optionally take a path to a document lexicon and make a copy of it that reflects
the produced reordering.

reorder-docids \
    --documents /path/to/original/doclex \
    --reordered-documents /path/to/reordered/doclex \
    ...





Typically, you will want to do that if you plan to evaluate queries, which will need access to
a correct document lexicon.


NOTE: Because these options are common to all reordering methods, we ignore them below for brevity.






Random

Random document reordering, as the name suggests, randomly shuffles all document IDs.
Additionally, it can take a random seed. Two executions of the command with the same seed
will produce the same final ordering.

reorder-docids --random \
    --collection /path/to/inv \
    --output /path/to/inv.random \
    --seed 123456789 # optional







By feature (e.g., URL or TRECID)

An index can be reordered according to any single document feature, such as URL or TRECID,
as long as it is stored in a text file line by line, where line n is the feature of
document n in the original order.

In particular, our collection parsing command produces two such feature files:


	*.documents, which is typically a list of TRECIDs,


	*.urls, which is a list of document URLs.




To use either, you simply need to run:

reorder-docids \
    --collection /path/to/inv \
    --output /path/to/inv.random \
    --by-feature /path/to/feature/file







From custom mapping

You can also produce a mapping yourself and feed it to the command.
Such mapping is a text file with two columns separated by a whitespace:

<original ID> <new ID>





Having that, reordering is as simple as running:

reorder-docids \
    --collection /path/to/inv \
    --output /path/to/inv.random \
    --from-mapping /path/to/custom/mapping







Recursive Graph Bisection

We provide an implementation of the Recursive Graph Bisection (aka BP) algorithm,
which is currently the state-of-the-art for minimizing the compressed space used
by an inverted index (or graph) through document reordering.
The algorithm tries to minimize an objective function directly related to the number
of bits needed to store a graph or an index using a delta-encoding scheme.

Learn more from the original paper:


L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita.
Compressing  graphs  and  indexes  with  recursive  graph  bisection.
In Proc. SIGKDD, pages 1535–1544, 2016.




In PISA, you simply need to pass --recursive-graph-bisection option (or its alias --bp)
to the reorder-docids command.

reorder-docids --bp \
    --collection /path/to/inv \
    --output /path/to/inv.random





Note that --bp allows for some additional options.
For example, the algorithm constructs a forward index in memory, which is in a special format
separate from the PISA forward index that you obtain from the parse_collection tool.
You can instruct reorder-docids to store that intermediate structure (--store-fwdidx),
as well as provide a previously constructed one (--fwdidx), which can be useful if you
want to reuse it for several runs with different algorithm parameters.
To see all available parameters, run reorder-docids --help.





          

      

      

    

  

  
    

    Threshold estimation
    

    
 
  

    
      
          
            
  
Threshold estimation

Currently it is possible to perform threshold estimation tasks using the
kth_threshold tool. The tool computes the k-highest impact score for
each term of a query. Clearly, the top-k threshold of a query can be
lower-bounded by the maximum of the k-th highest impact scores of the
query terms.

In addition to the k-th highest score for each individual term, it is
possible to use the k-th highest score for certain pairs and triples of
terms.

To perform threshold estimation use the kth_threshold command:

A tool for performing threshold estimation using the k-highest impact score for each term, pair or triple of a query. Pairs and triples are only used if provided with --pairs and --triples respectively.
Usage: ./bin/kth_threshold [OPTIONS]

Options:
  -h,--help                   Print this help message and exit
  -e,--encoding TEXT REQUIRED Index encoding
  -i,--index TEXT REQUIRED    Inverted index filename
  -w,--wand TEXT REQUIRED     WAND data filename
  --compressed-wand Needs: --wand
                              Compressed WAND data file
  --tokenizer TEXT:{english,whitespace}=english
                              Tokenizer
  -H,--html UINT=0            Strip HTML
  -F,--token-filters TEXT:{krovetz,lowercase,porter2} ...
                              Token filters
  --stopwords TEXT            Path to file containing a list of stop words to filter out
  -q,--queries TEXT           Path to file with queries
  --terms TEXT                Term lexicon
  --weighted                  Weights scores by query frequency
  -k INT REQUIRED             The number of top results to return
  -s,--scorer TEXT REQUIRED   Scorer function
  --bm25-k1 FLOAT Needs: --scorer
                              BM25 k1 parameter.
  --bm25-b FLOAT Needs: --scorer
                              BM25 b parameter.
  --pl2-c FLOAT Needs: --scorer
                              PL2 c parameter.
  --qld-mu FLOAT Needs: --scorer
                              QLD mu parameter.
  -L,--log-level TEXT:{critical,debug,err,info,off,trace,warn}=info
                              Log level
  --config TEXT               Configuration .ini file
  -p,--pairs TEXT Excludes: --all-pairs
                              A tab separated file containing all the cached term pairs
  -t,--triples TEXT Excludes: --all-triples
                              A tab separated file containing all the cached term triples
  --all-pairs Excludes: --pairs
                              Consider all term pairs of a query
  --all-triples Excludes: --triples
                              Consider all term triples of a query
  --quantized                 Quantizes the scores





--all-pairs and --all-triples can be used if you want to consider
all the pairs and triples terms of a query as being previously cached.




          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    

    Retrieving Query Results
    

    
 
  

    
      
          
            
  
Retrieving Query Results

This program is used to retrieve query results.
The output is in TREC format, so it can be directly used with trec_eval utility
to evaluate query precision.


Usage

Retrieves query results in TREC format.
Usage: ./bin/evaluate_queries [OPTIONS]

Options:
  -h,--help                   Print this help message and exit
  --config TEXT               Configuration .ini file
  -t,--type TEXT REQUIRED     Index type
  -i,--index TEXT REQUIRED    Collection basename
  -w,--wand TEXT              Wand data filename
  -q,--query TEXT             Queries filename
  --compressed-wand           Compressed wand input file
  -k UINT                     k value
  --terms TEXT                Term lexicon
  --nostem Needs: --terms     Do not stem terms
  --documents TEXT REQUIRED   Document lexicon









          

      

      

    

  

  
    

    PISA: Regression Tests for Disks 4 & 5 (Robust04)
    

    
 
  

    
      
          
            
  
PISA: Regression Tests for Disks 4 & 5 [https://trec.nist.gov/data_disks.html] (Robust04)


Indexing

First, we will create a directory where all the indexes are going to be stored:

mkdir robust04






Parsing

gzip -dc $(find /path/to/disk45/ -type f -name '*.*z' \
    \( -path '*/disk4/fr94/[0-9]*/*' -o -path '*/disk4/ft/ft*' \
    -o -path '*/disk5/fbis/fb*' -o -path '*/disk5/latimes/la*' \)) \
    | bin/parse_collection -f trectext -b 10000 --stemmer porter2 --content-parser html -o robust04/fwd





You can replace gzip -dc with zcat on Linux or gzcat on MacOS.
The directory /path/to/disk45/ should be the root directory of TREC Disks 4 & 5 [https://trec.nist.gov/data_disks.html].



Inverting

/path/to/pisa/build/bin/invert \
    -i robust04/fwd \
    -o robust04/inv \
    -b 400000







Reordering

We perform Recursive Graph Bisection (aka BP) algorithm [https://dl.acm.org/doi/10.1145/2939672.2939862], which is currently the state-of-the-art for minimizing the compressed space used by an inverted index (or graph) through document reordering.

/path/to/pisa/build/bin/recursive_graph_bisection \
    -c robust04/inv \
    -o robust04/inv.bp \
    --documents robust04/fwd.doclex \
    --reordered-documents \
    robust04/fwd.bp.doclex







Meta data

To perform BM25 queries it is necessary to build an additional file containing the information needed to compute the score, such as the document lengths. The following command builds a metadata file with block-max structure with blocks of fixed size of 64 postings:

/path/to/pisa/build/bin/create_wand_data \
    -c robust04/inv.bp \
    -b 64 \
    -o robust04/inv.bm25.bmw \
    -s bm25







Index Compression

/path/to/pisa/build/bin/create_freq_index \
    -e block_simdbp \
    -c robust04/inv.bp \
    -o robust04/inv.block_simdbp \
    --check








Retrieval

Queries can be downloaded from NIST:
TREC 2004 Robust Track (Topics 301-450 & 601-700) [http://trec.nist.gov/data/robust/04.testset.gz]

wget http://trec.nist.gov/data/robust/04.testset.gz
gunzip 04.testset.gz
/path/to/pisa/build/bin/extract_topics -i 04.testset -o topics.robust2004





The above command will download the topics from the NIST website, extract the archive and parse topics in order to get title, desc and narr fields in separate files.

/path/to/pisa/build/bin/evaluate_queries \
    -e block_simdbp \
    -a block_max_wand \
    -i robust04/inv.block_simdbp \
    -w robust04/inv.bm25.bmw \
    --stemmer porter2 \
    --documents robust04/fwd.bp.doclex \
    --terms robust04/fwd.termlex \
    -k 1000 \
    --scorer bm25 \
    -q topics.robust2004.title \
    > run.robust2004.bm25.title.robust2004.txt







Evaluation

Qrels can be downloaded from NIST:
TREC 2004 Robust Track (Topics 301-450 & 601-700) [http://trec.nist.gov/data/robust/qrels.robust2004.txt]

wget http://trec.nist.gov/data/robust/qrels.robust2004.txt





trec_eval [https://github.com/usnistgov/trec_eval] is the standard tool used by the TREC community for
evaluating an ad-hoc retrieval run, given the results file and a standard set of judged results (qrels).
It needs to be compiled and installed in order to perform the following command:

trec_eval -m map -m P.30 -m ndcg_cut.20 qrels.robust2004.txt run.robust2004.bm25.title.robust2004.txt





With the above commands, you should be able to replicate the following results:

map                     all 0.2543
P_30                    all 0.3139
ndcg_cut_20             all 0.4250







Replication Log


	Results replicated by @amallia [https://github.com/amallia] on 2020-04-03 (commit b01073 [https://github.com/pisa-engine/pisa/commit/2b010731e6ea1b45a5f4a7caa9135a76219ed487])








          

      

      

    

  
_images/pipeline.png





_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to PISA
        


        		
          Getting Started
          
            		
              Building the code
              
                		
                  Requirements
                


                		
                  Dependencies
                


                		
                  Building
                


              


            


            		
              Testing
            


            		
              PISA Regression Experiments
            


          


        


        		
          Indexing Pipeline
          
            		
              External Resources
              
                		
                  Raw Collection
                


                		
                  CIFF Index
                


              


            


            		
              Forward Index
            


            		
              Inverted Index
              
                		
                  Uncompressed / Binary Collection
                


                		
                  Compressed
                


              


            


            		
              WAND Data
            


            		
              Shards
            


          


        


        		
          Parsing
          
            		
              Generating mapping files
            


            		
              Supported stemmers
            


            		
              Supported formats
            


          


        


        		
          Inverting
          
            		
              Inverted index format
              
                		
                  Reading the inverted index using Python
                


              


            


          


        


        		
          Sharding
          
            		
              Partitioning collection
            


            		
              Working with shards
            


          


        


        		
          Compress Index
          
            		
              Usage
            


            		
              Compression Algorithms
              
                		
                  Binary Interpolative Coding
                


                		
                  Elias-Fano
                


                		
                  MaskedVByte
                


                		
                  OptPFD
                


                		
                  Partitioned Elias Fano
                


                		
                  QMX
                


                		
                  SIMD-BP128
                


                		
                  Simple8b
                


                		
                  Simple16
                


                		
                  StreamVByte
                


                		
                  Varint-G8IU
                


                		
                  VarintGB
                


              


            


          


        


        		
          Query an index
          
            		
              Usage
            


            		
              Build additional data
            


            		
              Query algorithms
              
                		
                  AND
                


                		
                  OR
                


                		
                  MaxScore
                


                		
                  WAND
                


                		
                  BlockMax WAND
                


                		
                  BlockMax MaxScore
                


                		
                  Variable BlockMax WAND
                


              


            


          


        


        		
     