

Welcome to PISA

Performant Indexes and Search for Academia

Description

PISA is a text search engine able to run on large-scale collections of documents. It allows researchers to experiment with state-of-the-art techniques, allowing an ideal environment for rapid development.

Some features of PISA are listed below:

	Written in C++ for performance;

	Indexing & Parsing & Sharding capabilities;

	Many index compression methods implemented;

	Many query processing algorithms implemented;

	Implementation of document reordering;

	Free and open-source with permissive license;

Note

PISA is still in its initial release and many new features are going to come in the next versions. Contributions are also welcome!

Contents:

	Getting Started
	Building the code

	Run unit tests

	Parsing
	Generating mapping files

	Supported stemmers

	Supported formats

	Inverting
	Inverted index format
	Reading the inverted index using Python

	Sharding
	partition_fwd_index

	invert-shards.sh

	compress-shards.sh

	Compress Index
	Usage

	Compression Algorithms
	Binary Interpolative Coding

	Elias-Fano

	MaskedVByte

	OptPFD

	Partitioned Elias Fano

	QMX

	SIMD-BP128

	Simple8b

	Simple16

	StreamVByte

	Varint-G8IU

	VarintGB

	Query an index
	Usage

	Build additional data

	Query algorithms
	AND

	OR

	MaxScore

	WAND

	BlockMax WAND

	BlockMax MaxScore

	Variable BlockMax WAND

	Document Reordering
	Document name & URL based ordering
	1. Mapping file creation

	2. Index remapping

	Random Ordering

	Recursive Graph Bisection
	Description

	Usage

Getting Started

Building the code

The code is tested on Linux with GCC 7.4.0, GCC 8.1.0, Clang 5.0, Clang 6.0 and on macOS with AppleClang 9.1.0.

The following dependencies are needed for the build.

	CMake >= 3.0, for the build system

	OpenMP (optional)

To build the code:

$ mkdir build
$ cd build
$ cmake .. -DCMAKE_BUILD_TYPE=Release
$ make

Run unit tests

To run the unit tests simply perform a make test.

The directory test/test_data contains a small document collection used in the
unit tests. The binary format of the collection is described in a following
section.
An example set of queries can also be found in test/test_data/queries.

Parsing

A forward index is a data structure that stores the term identifiers associated to every document. Conversely, an inverted index stores for each unique term the document identifiers where it appears (usually, associated to a numeric value used for ranking purposes such as the raw frequency of the term within the document).

The objective of the parsing process is to represent a given collection as a forward index. To parse a collection, use the parse_collection command:

parse_collection - parse collection and store as forward index.
Usage: ./bin/parse_collection [OPTIONS]

Options:
 -h,--help Print this help message and exit
 -o,--output TEXT REQUIRED Forward index filename
 -j,--threads UINT Thread count
 -b,--batch-size INT=100000 Number of documents to process in one thread
 -f,--format TEXT=plaintext Input format
 --stemmer TEXT Stemmer type
 --content-parser TEXT Content parser type
 --debug Print debug messages

 Subcommands:
 merge Merge previously produced batch files.
 When parsing process was killed during merging, use this
 command to finish merging without having to restart building batches.

For example:

$ mkdir -p path/to/forward
$ zcat ClueWeb09B/*/*.warc.gz | # pass unzipped stream in WARC format
 parse_collection \
 -j 8 # use up to 8 threads at a time
 -b 10000 # one thread builds up to 10k documents in memory
 -f warc # use WARC
 --stemmer porter2 # stem every term using the Porter2 algorithm
 --content-parser html # parse HTML content before extracting tokens
 -o path/to/forward/cw09b

In case you get the error -bash: /bin/zcat: Argument list too long, you can pass the unzipped stream using:

$ find ClueWeb09B -name '*.warc.gz' -exec zcat -q {} \;

The parsing process will write the following files:

	cw09b: forward index in binary format.

	cw09b.terms: a new-line-delimited list of sorted terms,
where term having ID N is on line N, with N starting from 0.

	cw09b.termlex: a binary representation of the .terms file that is used to look up term identifiers at query time.

	cw09b.documents: a new-line-delimited list of document titles (e.g., TREC-IDs),
where document having ID N is on line N, with N starting from 0.

	cw09b.doclex: a binary representation of the .documents file that is used to look up document identifiers at query time.

	cw09b.urls: a new-line-delimited list of URLs, where URL having ID N is on
line N, with N starting from 0. Also, keep in mind that each ID corresponds with
an ID of the cw09b.documents file.

Generating mapping files

Once the forward index has been generated, a binary document map and lexicon file will be automatically built.
However, they can also be built using the lexicon utility by providing the new-line delimited file as input.
The lexicon utility also allows efficient look-ups and dumping of these binary mapping files.

Examples of the lexicon command are shown below:

Build, print, or query lexicon
Usage: ./bin/lexicon [OPTIONS] SUBCOMMAND

Options:
 -h,--help Print this help message and exit

Subcommands:
 build Build a lexicon
 lookup Retrieve the payload at index
 rlookup Retrieve the index of payload
 print Print elements line by line

For example, assume we have the following plaintext, new-line delimited file, example.terms:

aaa
bbb
def
zzz

We can generate a lexicon as follows: ./bin/lexicon build example.terms example.lex

You can dump the binary lexicon back to a plaintext representation: ./bin/lexicon print example.lex which should output:

aaa
bbb
def
zzz

You can retrieve the term with a given identifier: ./bin/lexicon lookup example.lex 2 which outputs def

Finally, you can retrieve the id of a given term: ./bin/lexicon rlookup example.lex def which outputs 2. NOTE: This requires the initial file to be lexicographically sorted, as rlookup depends on binary search.

Supported stemmers

	Porter2

	Krovetz

Supported formats

	plaintext: every line contains the document’s title first, then any number of
.. code-block:: guess

whitespaces, followed by the content delimited by a new line character.

	trectext: TREC newswire collections.

	trecweb: TREC web collections.

	warc: Web ARChive format as defined in [the format specification](https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/).

	wapo: TREC Washington Post Corpus.

In case you want to parse a set of files where each one is a document (for example, the collection
wiki-large [http://dg3rtljvitrle.cloudfront.net/wiki-large.tar.gz]), use the files2trec.py script
to format it to TREC (take into account that each relative file path is used as the document ID).
Once the file is generated, parse it with the parse_collection command specifying the trectext
value for the --format option.

Inverting

Once the parsing phase is complete, use the invert command to turn a forward index into an inverted index:

invert - turn forward index into inverted index
Usage: ./invert [OPTIONS]

Options:
 -h,--help Print this help message and exit
 -i,--input TEXT REQUIRED Forward index filename
 -o,--output TEXT REQUIRED Output inverted index basename
 -j,--threads UINT Thread count
 --term-count UINT REQUIRED Term count
 -b,--batch-size INT=100000 Number of documents to process at a time

For example, assuming the existence of a forward index in the path path/to/forward/cw09b:

$ mkdir -p path/to/inverted
$./invert -i path/to/forward/cw09b -o path/to/inverted/cw09b --term-count `wc -w < path/to/forward/cw09b.terms`

Note that the script requires as parameter the number of terms to be indexed, which is obtained by embedding the
wc -w < path/to/forward/cw09b.terms instruction.

Inverted index format

A binary sequence is a sequence of integers prefixed by its length, where both the sequence integers and the length are written as 32-bit little-endian unsigned integers. An inverted index consists of 3 files, <basename>.docs, <basename>.freqs, <basename>.sizes:

	<basename>.docs starts with a singleton binary sequence where its only
integer is the number of documents in the collection. It is then followed by
one binary sequence for each posting list, in order of term-ids. Each posting
list contains the sequence of document-ids containing the term.

	<basename>.freqs is composed of a one binary sequence per posting list, where
each sequence contains the occurrence counts of the postings, aligned with the
previous file (note however that this file does not have an additional
singleton list at its beginning).

	<basename>.sizes is composed of a single binary sequence whose length is the
same as the number of documents in the collection, and the i-th element of the
sequence is the size (number of terms) of the i-th document.

Reading the inverted index using Python

import os
import numpy as np

class InvertedIndex:
 def __init__(self, index_name):
 index_dir = os.path.join(index_name)
 self.docs = np.memmap(index_name + ".docs", dtype=np.uint32,
 mode='r')
 self.freqs = np.memmap(index_name + ".freqs", dtype=np.uint32,
 mode='r')

 def __iter__(self):
 i = 2
 while i < len(self.docs):
 size = self.docs[i]
 yield (self.docs[i+1:size+i+1], self.freqs[i-1:size+i-1])
 i += size+1

 def __next__(self):
 return self

for i, (docs, freqs) in enumerate(InvertedIndex("cw09b")):
 print(i, docs, freqs)

Sharding

We support partitioning a collection into a number of smaller subsets called shards.
Right now, only a forward index can be partitioned by running partition_fwd_index command.
Then, the resulting shards must be inverted individually with invert command.
For convenience, we provide script/invert-shards that takes a file prefix
to shard forward indexes and inverts them all.

partition_fwd_index

Partition a forward index
Usage: ./bin/partition_fwd_index [OPTIONS]

Options:
 -h,--help Print this help message and exit
 -i,--input TEXT REQUIRED Forward index filename
 -o,--output TEXT REQUIRED Basename of partitioned shards
 -j,--threads INT Thread count
 -r,--random-shards INT Excludes: --shard-files
 Number of random shards
 -s,--shard-files TEXT ... Excludes: --random-shards
 List of files with shard titles
 --debug Print debug messages

For example, one can partition collection randomly:

$ partition_fwd_index \
 -j 8 # use up to 8 threads at a time
 -i full_index_prefix \
 -o shard_prefix \
 -r 123 # partition randomly into 123 shards

Alternatively, a set of files can be provided.
Let’s assume we have a folder shard-titles with a set of text files.
Each file contains new-line-delimited document titles (e.g., TREC-IDs) for one partition.
Then, one would call:

$ partition_fwd_index \
 -j 8 # use up to 8 threads at a time
 -i full_index_prefix \
 -o shard_prefix \
 -s shard-titles/*

Note that the names of the files passed with -s will be ignored.
Instead, each shard will be assigned a numerical ID from 0 to N - 1 in order
in which they are passed in the command line.
Then, each resulting forward index will have appended .ID to its name prefix:
shard_prefix.000, shard_prefix.001, and so on.

invert-shards.sh

This script inverts all shards with a common prefix.

USAGE:
 invert-shards <PROGRAM> <INPUT_BASENAME> <OUTPUT_BASENAME> [program flags]

For example, if the following command was used to partition a collection:

$ partition_fwd_index \
 -j 8 # use up to 8 threads at a time
 -i full_index_prefix \
 -o shard_prefix \
 -r 123 # partition randomly into 123 shards

Then, one can invert the shards by executing the following script:

$ invert-shards.sh \
 /path/to/invert # provide path to program
 shard_prefix # basename to shard collections
 shard_prefix_inverted # basename to shard inverted indexes
 -j 8 -b 1000 # any arguments to be appended to each program execution

compress-shards.sh

Next, you can compress the inverted shards with compress-shards.sh:

USAGE:
 compress-shards <PROGRAM> <INPUT_BASENAME> <OUTPUT_BASENAME> [program flags]

For example, following the above example:

$ compress-shards.sh \
 /path/to/create_freq_index # provide path to program
 shard_prefix_inverted # basename to shard inverted indexes
 shard_prefix_inverted_simdbp # basename to shard compressed indexes
 -t block_simdbp --check # any arguments to be appended to each program execution

Note that this script can be also used for creating WAND data by replacing the program:

$ compress-shards.sh \
 /path/to/create_wand_data # provide path to program
 shard_prefix_inverted # basename to shard inverted indexes
 shard_prefix_inverted_wand # basename to shard compressed indexes

Compress Index

Usage

To create an index use the command create_freq_index. The available index
types are listed in index_types.hpp.

create_freq_index - a tool for creating an index.
Usage:
 create_freq_index [OPTION...]

 -h, --help Print help
 -t, --type type_name Index type
 -c, --collection basename Collection basename
 -o, --out filename Output filename
 --check Check the correctness of the index (default:
 false)

For example, to create an index using the
optimal partitioning algorithm using the test collection, execute the command:

$./bin/create_freq_index -t opt -c ../test/test_data/test_collection -o test_collection.index.opt --check

where test/test_data/test_collection is the basename of the collection, that
is the name without the .{docs,freqs,sizes} extensions, and
test_collection.index.opt is the filename of the output index. --check
perform a verification step to check the correctness of the index.

Compression Algorithms

Binary Interpolative Coding

Binary Interpolative Coding (BIC) directly encodes a monotonically increasing sequence. At each step of this recursive algorithm, the middle element m is encoded by a number m − l − p, where l is the lowest value and p is the position of m in the currently encoded sequence. Then we recursively encode the values to the left and right of m. BIC encodings are very space-efficient, particularly on
clustered data; however, decoding is relatively slow.

To compress an index using BIC use the index type block_interpolative.

Alistair Moffat, Lang Stuiver: Binary Interpolative Coding for Effective Index Compression. Inf. Retr. 3(1): 25-47 (2000)

Elias-Fano

Given a monotonically increasing integer sequence S of size n, such that (S_{n-1} < u), we can encode it in binary using (lceillog urceil) bits.
Elias-Fano coding splits each number into two parts, a low part consisting of (l = lceillog frac{u}{n}rceil) right-most bits, and a high part consisting of the remaining (lceillog urceil - l) left-most bits. The low parts are explicitly written in binary for all numbers, in a single stream of bits. The high parts are compressed by writing, in negative-unary form, the gaps between the high parts of consecutive numbers.

To compress an index using Elias-Fano use the index type ef.

Sebastiano Vigna. 2013. Quasi-succinct indices. In Proceedings of the sixth ACM international conference on Web search and data mining (WSDM ‘13). ACM, New York, NY, USA, 83-92.

MaskedVByte

Jeff Plaisance, Nathan Kurz, Daniel Lemire, Vectorized VByte Decoding, International Symposium on Web Algorithms 2015, 2015.

OptPFD

Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression and query processing with optimized document ordering. In Proceedings of the 18th international conference on World wide web (WWW ‘09). ACM, New York, NY, USA, 401-410. DOI: https://doi.org/10.1145/1526709.1526764

Partitioned Elias Fano

Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano indexes. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (SIGIR ‘14). ACM, New York, NY, USA, 273-282. DOI: https://doi.org/10.1145/2600428.2609615

QMX

Quantities, Multipliers, and eXtractor (QMX) packs as many integers as possible into 128-bit words (Quantities) and stores the selectors (eXtractors) separately in a different stream. The selectors are compressed (Multipliers) with
RLE (Run-Length Encoding).

To compress an index using QMX use the index type block_qmx.

Andrew Trotman. 2014. Compression, SIMD, and Postings Lists. In Proceedings of the 2014 Australasian Document Computing Symposium (ADCS ‘14), J. Shane Culpepper, Laurence Park, and Guido Zuccon (Eds.). ACM, New York, NY, USA, Pages 50, 8 pages. DOI: https://doi.org/10.1145/2682862.2682870

SIMD-BP128

Daniel Lemire, Leonid Boytsov: Decoding billions of integers per second through vectorization. Softw., Pract. Exper. 45(1): 1-29 (2015)

Simple8b

Vo Ngoc Anh, Alistair Moffat: Index compression using 64-bit words. Softw., Pract. Exper. 40(2): 131-147 (2010)

Simple16

Jiangong Zhang, Xiaohui Long, and Torsten Suel. 2008. Performance of compressed inverted list caching in search engines. In Proceedings of the 17th international conference on World Wide Web (WWW ‘08). ACM, New York, NY, USA, 387-396. DOI: https://doi.org/10.1145/1367497.1367550

StreamVByte

Daniel Lemire, Nathan Kurz, Christoph Rupp: Stream VByte: Faster byte-oriented integer compression. Inf. Process. Lett. 130: 1-6 (2018). DOI: https://doi.org/10.1016/j.ipl.2017.09.011

Varint-G8IU

Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and Paramjit S. Oberoi. 2011. SIMD-based decoding of posting lists. In Proceedings of the 20th ACM international conference on Information and knowledge management (CIKM ‘11), Bettina Berendt, Arjen de Vries, Wenfei Fan, Craig Macdonald, Iadh Ounis, and Ian Ruthven (Eds.). ACM, New York, NY, USA, 317-326. DOI: https://doi.org/10.1145/2063576.2063627

VarintGB

Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems: invited talk. In Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM ‘09), Ricardo Baeza-Yates, Paolo Boldi, Berthier Ribeiro-Neto, and B. Barla Cambazoglu (Eds.). ACM, New York, NY, USA, 1-1. DOI: http://dx.doi.org/10.1145/1498759.1498761

Query an index

Usage

queries - a tool for performing queries on an index.
Usage: ./bin/queries [OPTIONS]

Options:
 -h,--help Print this help message and exit
 --config TEXT Configuration .ini file
 -t,--type TEXT REQUIRED Index type
 -a,--algorithm TEXT REQUIRED
 Query algorithm
 -i,--index TEXT REQUIRED Collection basename
 -w,--wand TEXT Wand data filename
 -q,--query TEXT Queries filename
 --compressed-wand Compressed wand input file
 -k UINT k value
 -T,--thresholds TEXT k value
 --terms TEXT Text file with terms in separate lines
 --nostem Needs: --terms Do not stem terms
 --extract Extract individual query times
 --silent Suppress logging

Now it is possible to query the index.
The command queries parses each line of the standard input (or a file if -q present)
as a tab-separated collection of term IDs (or words if --terms present),
where the i-th term is the i-th list in the input collection.

$./bin/queries -t opt -a and -i test_collection.index.opt -w test_collection.wand -q ../test/test_data/queries

This performs conjunctive queries (and). In place of and other operators can
be used (or, wand, …, see queries.cpp), and also multiple operators
separated by colon (and:or:wand).

If the WAND file is compressed, please append --compressed-wand flag.

Build additional data

To perform BM25 queries it is necessary to build an additional file containing
the parameters needed to compute the score, such as the document lengths. The
file can be built with the following command:

$./bin/create_wand_data -c ../test/test_data/test_collection -o test_collection.wand

If you want to compress the file append --compress at the end of the command.
When using variable-sized blocks (for VBMW) via the --variable-block parameter,
you can also specify lambda with the -l <float> or --lambda <float> flags.
The value of lambda impacts the mean size of the variable blocks that are
output. See the VBMW paper (listed below) for more details. If using fixed-sized
blocks, which is the default, you can supply the desired block size using the
-b <UINT> or --block-size <UINT> arguments. Note that if using fixed/variable
sized blocks, and the -l or -b parameters are not set, the default parameters
will be used from the configuration file configuration.hpp.

Query algorithms

AND

OR

MaxScore

Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimizations. Inf. Process. Manage. 31, 6 (November 1995), 831-850. DOI=http://dx.doi.org/10.1016/0306-4573(95)00020-H

WAND

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. 2003. Efficient query evaluation using a two-level retrieval process. In Proceedings of the twelfth international conference on Information and knowledge management (CIKM ‘03). ACM, New York, NY, USA, 426-434. DOI: https://doi.org/10.1145/956863.956944

BlockMax WAND

Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-max indexes. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (SIGIR ‘11). ACM, New York, NY, USA, 993-1002. DOI=http://dx.doi.org/10.1145/2009916.2010048

BlockMax MaxScore

Variable BlockMax WAND

Antonio Mallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano Venturini. 2017. Faster BlockMax WAND with Variable-sized Blocks. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘17). ACM, New York, NY, USA, 625-634. DOI: https://doi.org/10.1145/3077136.3080780

Document Reordering

Document name & URL based ordering

To reorder an inverted index based on document names or their URLs, use the generate_sorted_docids_mapping.py script and the shuffle_docids command.

The first one allows to generate a file in which each line maps a <current ID> with a <new ID>. These identifiers are generated based on the lexicographical order of document names (or their URLs). Furthermore, this file serves as input to the shuffle_docids command, which materializes the reordering operation.

1. Mapping file creation

To generate the mapping file, it is necessary to take into account that each line number of the .documents and .urls files (which are part of the forward index) correspond to its docid. So, the first document of .documents (line 0, and therefore docid = 0) is equivalent to the first URL in the .urls file, and so on. In this way, if you want to generate the mapping file to perform a reordering using either files, you should use the following script:

usage: script/generate_sorted_docids_mapping.py [-h] documents output

Take a text file lexicon (e.g. '.documents' or '.urls' file) and sort it,
generating a file mapping '<current ID> <new ID>' to use with the
'suffle_docids' script.

positional arguments:
 documents File containing one document (or URL) per line and where each
 line number (starting from zero) represents its docid
 output Output file mapping '<current ID> <new ID>'

optional arguments:
 -h, --help show this help message and exit

For example:

$ python script/generate_docids_sorted_map.py path/to/inverted.urls mapping.txt

Note that in the example the .urls file is used for reordering. If you want to generate the mapping based on document names, the .documents file should be used instead.

2. Index remapping

Once the mapping file has been created, you must use the shuffle_docids command to generate the new inverted index:

Usage: ./bin/shuffle_docids <collection basename> <output basename> [ordering file]
Ordering file is of the form <current ID> <new ID>

For example:

$ mkdir -p path/to/ordered
$./bin/shuffle_docids path/to/inverted path/to/ordered/inverted mapping.txt

Random Ordering

If you want to perfom a random ordering, use the shuffle_docids command (described in the previous section), but without specifying the [ordering file] option.

Recursive Graph Bisection

Recursive graph bisection algorithm used for inverted indexed reordering.

Description

Implementation of the Recursive Graph Bisection (aka BP) algorithm which is currently the state-of-the-art for minimizing the compressed space used by an inverted index (or graph) through document reordering.
The algorithm tries to minimize an objective function directly related to the number of bits needed to storea graph or an index using a delta-encoding scheme.

	Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, andA. Shalita. Compressing graphs and indexes with recursive graph bisec-tion. InProc. SIGKDD, pages 1535–1544, 2016.

Usage

Recursive graph bisection algorithm used for inverted indexed reordering.
Usage: ./bin/recursive_graph_bisection [OPTIONS]

Options:
 -h,--help Print this help message and exit
 -c,--collection TEXT REQUIRED
 Collection basename
 -o,--output TEXT Output basename
 --store-fwdidx TEXT Output basename (forward index)
 --fwdidx TEXT Use this forward index
 -m,--min-len UINT Minimum list threshold
 -d,--depth INT in [1 - 64] Excludes: --config
 Recursion depth
 -t,--threads UINT Thread count
 --prelim UINT Precomputing limit
 --config TEXT Excludes: --depth
 Node configuration file
 --nogb No VarIntGB compression in forward index
 -p,--print Print ordering to standard output

Index

Retrieving Query Results

This program is used to retrieve query results.
The output is in TREC format, so it can be directly used with trec_eval utility
to evaluate query precision.

Usage

Retrieves query results in TREC format.
Usage: ./bin/evaluate_queries [OPTIONS]

Options:
 -h,--help Print this help message and exit
 --config TEXT Configuration .ini file
 -t,--type TEXT REQUIRED Index type
 -i,--index TEXT REQUIRED Collection basename
 -w,--wand TEXT Wand data filename
 -q,--query TEXT Queries filename
 --compressed-wand Compressed wand input file
 -k UINT k value
 --terms TEXT Term lexicon
 --nostem Needs: --terms Do not stem terms
 --documents TEXT REQUIRED Document lexicon

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PISA

 		
 Getting Started

 		
 Building the code

 		
 Run unit tests

 		
 Parsing

 		
 Generating mapping files

 		
 Supported stemmers

 		
 Supported formats

 		
 Inverting

 		
 Inverted index format

 		
 Reading the inverted index using Python

 		
 Sharding

 		
 partition_fwd_index

 		
 invert-shards.sh

 		
 compress-shards.sh

 		
 Compress Index

 		
 Usage

 		
 Compression Algorithms

 		
 Binary Interpolative Coding

 		
 Elias-Fano

 		
 MaskedVByte

 		
 OptPFD

 		
 Partitioned Elias Fano

 		
 QMX

 		
 SIMD-BP128

 		
 Simple8b

 		
 Simple16

 		
 StreamVByte

 		
 Varint-G8IU

 		
 VarintGB

 		
 Query an index

 		
 Usage

 		
 Build additional data

 		
 Query algorithms

 		
 AND

 		
 OR

 		
 MaxScore

 		
 WAND

 		
 BlockMax WAND

 		
 BlockMax MaxScore

 		
 Variable BlockMax WAND

 		
 Document Reordering

 		
 Document name & URL based ordering

 		
 1. Mapping file creation

 		
 2. Index remapping

 		
 Random Ordering

 		
 Recursive Graph Bisection

 		
 Description

 		
 Usage

_static/up.png

_static/img/logo.png
PISA

_static/up-pressed.png

